Part Number Hot Search : 
F1040 C1206 S1232 SMD05 GT5G102 ZM4746 29F16 MBT39
Product Description
Full Text Search
 

To Download TQ9303 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 T
R
I
Q
U
I
N
T
S E M I C O N D U C T O R, I N C .
Figure 1. TQ9303 Block Diagram
Data Data 32 Parity 4 Control 11 HOST Data 32 Parity 4 Control 12 Data 10 Control 2 TQ9502 or GA9102 Rx Optical Rx or Copper Interface TQ9303 ENDEC 2 10 Control 2 TQ9501 or GA9101 Tx 2 Optical Tx or Copper Interface
TQ9303
Fibre Channel Encoder/Decoder
Features
* Compliant with ANSI X3T11 Fibre Channel Standard * Full implementation of Fibre Channel's FC-1 layer * Interfaces directly with TriQuint's GA9101/GA9102 and TQ9501/TQ9502 FC-0 Fibre Channel chipsets * Suitable for proprietary serial links (virtual ribbon cable) * Implements 8b/10b encoding and decoding * Implements ordered set encoding and decoding * Checks and generates 32-bit CRC and parity * 10-bit TTL-compatible interface to Transmitter and Receiver * 32-bit interface to the host * Fully synchronous operation * 160-pin PQFP
2
The TQ9303 ENDEC (ENcoder/DECoder) implements 8b/10b encoding and decoding, ordered set encoding and decoding, and parity checking and generation as defined in the Fibre Channel Physical Signaling Interface Standard (FC-PH). The ENDEC fully implements the FC-1 layer of the Fibre Channel Standard. Implemented in a 0.8-micron CMOS process, the ENDEC also performs 32-bit CRC checking and generation as defined in the FC-2 layer of the Fibre Channel specification. The TQ9303 ENDEC interfaces directly to TriQuint's FC-0 layer Fibre Channel Transmitter (Tx) and Receiver (Rx) chipsets at the speeds shown below:
FC Rate
FC-266 FC-531 FC-1063
Transmitter
GA9101 TQ9501 TQ9501
Receiver
GA9102 TQ9502 TQ9502
Data Rate (Mbaud)
194-266 500-625 1000-1250
Triquint's Transmitter and Receiver devices are designed with TriQuint's proprietary 0.7-micron GaAs process. The Tx and Rx interface directly to copper-based electrical media or to a fiber-optic module. The Transmitter performs parallel-to-serial conversion on the encoded data and generates the internal high-speed clock for the serial output data stream. The Receiver recovers the clock and data from the input serial stream, performs serialto-parallel conversion, and detects and aligns on the K28.5 character.
For additional information and latest specifications, see our website: www.triquint.com
1
DATACOM PRODUCTS
TQ9303
Fibre Channel provides a transport vehicle for Intelligent Peripheral Interface (IPI) and Small Computer System Interface (SCSI) upper layer command sets, HighPerformance Parallel Interface (HIPPI) data link layer, and other user-defined command sets. Fibre Channel replaces the SCSI, IPI, and HIPPI physical interfaces with a protocol-efficient alternative that provides performance improvements over distance and speed. Fibre Channel is optimized for predictable transfers of large blocks of data such as those used in file transfers between processors (such as super computers, mainframes, and super minis), storage systems (such as disk and tape drives), communications devices, and outputonly devices (such as laser printers and raster scan
graphics terminals). The Fibre Channel protocol is implemented in hardware, making it simple, efficient, and robust. The lower level physical interface is decoupled from the higher level protocol, allowing Fibre Channel to be configured with various topologies. Point-to-point, multi-drop bus, ring, and cross-point switch topologies are permitted in Fibre Channel, optimizing it for specific applications. Fibre Channel supports distances up to 10 Km at baud rates of 132.8125 Mbaud to 1.0625 Gbaud. Coax and STP (Shielded Twisted Pair) are used at lower data rates and shorter distances, while fiber-optic cables are used for higher data rates and longer distances.
Figure 2. TQ9303 ENDEC Block Diagram
CTXD0..31 32
Register
40
40 17
CTXPERR CTXCERR CTXCLK CTXWREF RESETN
Register
CTXC0, CTXC1, CTXP0..3, CTXRAWA, CTXRAWB CTXRAW, CTXPENN, CTXPMODE
8
Word-toHalf-Word Shifter
Mux
17
8b/10b Encoder
20
Mux
Half-Word- 10 to-Byte Shifter
Register
20 17
10
BTXD0..9
3
Parity Checker/ Generator
Ordered Set Encoder
32-BIT CRC Generator/ Checker
Word Half Word Byte Clk Clk Clk Clock Generator BTXCKIN BTXCKOUT
ENCODER SECTION DECODER SECTION
RXERROR CRXD0..31 1
Register
32
20 36 4 40 Half-Wordto-Word Shifter 20 10b/8b Decoder 20 Byte-toHalf-Word Shifter
Register
Mux
CRXP0..3, CRXS0, CRXS2..4 RAW Rx, RXPMODE CRXS1 CRXS5 WRDSYNC RXCKPH0,1 CRXCLK
8
16 16 1 3
10
BRXD0..9
2
Parity Generator
32-Bit CRC Checker
Ordered Set Decoder
Register
Line State Decoder
Word Sync Detector Word Half Word Byte Clk Clk Clk BRXCLK BRXSYNC
2
Clock Generator
2
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Functional Description
The TQ9303 may be divided into two independent functional sections: the Encoder and Decoder, as shown in Figure 2. The Encoder section describes the flow of data from the host to the transmitter. Conversely, the Decoder section describes the flow of data from the receiver to the host. Designed for fullduplex operation, the Encoder and Decoder will transmit and receive one at a time or simultaneously. The Encoder performs 8b/10b encoding of information from the host to the transmitter. The Decoder performs 10b/8b decoding of information from the receiver to the host. The host interface is denoted by a letter C (as in CTXP), and the transmit/receive interface is denoted by a letter B (as in BTXD0). Pins within the Encoder section are denoted with the letters TX (as in CTXP), and pins within the Decoder section are denoted with RX (as in CRXS1). At the host interface, the TQ9303 has a 32-bit transmit data bus and a 32-bit receive data bus, each with 4-bit parity and 8-bit control. The transmitter and receiver interfaces to the TQ9303 are 10-bit data buses. Table 5 includes all the pin descriptions. Detailed descriptions of the Encoder and Decoder sections follow. The following is the encode sequence data flow: 1. Word input 2. Parity check 3. Word-to-half-word conversion 4. Ordered set encoding 5. 32-bit CRC check or generate 6. Muxing between ordered set, 32-bit CRC, and unchanged input 7. 8b/10b encoding
DATACOM PRODUCTS
8. Muxing between unchanged input and encoded word 9. Half-word-to-byte conversion 10. Byte output Parity Check Block Parity check depends on the TXPENN (Transmit Parity ENable Not) input. TXPENN high ignores parity, while TXPENN low checks parity for each byte on the data bus, CTXD0..31. There are four parity bits (CTXP0..3), each bit corresponding to a byte of data, as follows: CTXP0 to CTXD0..7, CTXP1 to CTXD8..15, CTXP2 to CTXD16..23, and CTXP3 to CTXD24..31. Control bit TXPMODE (Transmit Parity MODE) alters the normal meaning of CTXP3. TXPMODE low is the normal mode, where CTXP3 checks for parity for CTXD24..31. With TXPMODE high, CTXP3 checks for parity for CTXD24..31 and CTXC0. CTXC0 is a control input which indicates whether CTXD0..31 is data or an ordered set. An ordered set is a Fibre Channel word where the most significant byte is composed of a valid special character, K28.5, as defined in the standard. Appendix A includes a table of valid special characters. The parity bits follow odd parity convention, where it is high if the number of ones is even and low if the number of ones is odd.
Encoder Section
The Encoder has several functional blocks: Parity Check, 32-Bit CRC, Ordered Set generator, 8b/10b Encoder, and Clock Generator. The Encoder section has two modes of operation: Normal mode and Raw mode. In the Normal mode, the Encoder section receives a word from the host interface, checks parity, calculates CRC, divides the word into bytes, encodes them using 8b/10b, and generates a 10-bit output, as illustrated in Figure 2. In the Raw mode, the Encoder section receives a word from the host interface without parity check, CRC check, or 8b/10b encoding.
For additional information and latest specifications, see our website: www.triquint.com
3
TQ9303
CTXPERR (Transmit Parity ERRor) is driven high when an error is detected in the parity check mode. When parity checking is disabled, CTXPERR is driven low. In Raw Mode transmit, where the data flow bypasses the parity check, 32-bit CRC, 8b/10b encoder, and ordered set encoder, CTXPERR is driven low. 32-Bit CRC Block 32-bit Cyclic Redundancy Checking (CRC) generates or checks CRC, depending on CTXC1. CTXC1 high generates CRC, while CTXC1 low checks CRC for the incoming frame. The CRC used in Fibre Channel is the same as FDDI's frame check sequence, where a 32bit CRC is computed for every frame, starting after SOF (Start Of Frame) and ending a byte before EOF (End Of Frame). The resulting 32-bit CRC is automatically inserted into the frame before EOF. In the check CRC mode, CTXCERR (Transmit Crc ERRor) is driven high when a CRC error is detected.
In the generate CRC mode, CTXCERR is driven low. In Raw Mode transmit where the data flow bypasses the parity check, 32-bit CRC, 8b/10b encoder, and ordered set encoder, CTXCERR is driven low. The Generate CRC mode timing diagrams are shown in Figure 3. CTXC1 is high for the entire frame, when generating CRC. CTXC0 is high only for the duration of SOF, indicating that the input word (CTXD0..31) is an ordered set. Similarly, CTXC0 is high for the duration of EOF, which is another ordered set. The 32-bit CRC block computes the CRC for data after SOF and before EOF. The resulting CRC is inserted between the last data word and EOF at the output (BTXD0..9). The Check CRC mode timing diagrams are shown in Figure 4. CTXC1 is low for the whole frame when checking CRC. CTXC0 is high only for the duration of SOF, indicating that the input word (CTXD0..31) is an ordered set. Similarly, CTXC0 is high for the duration of EOF, another ordered set. 32-bit CRC begins after SOF
Figure 3. Generate CRC Mode TIming
CRC Computation
CTXD0..31
SOF
D0
D1
Dn
EOF
"d"
Idle
CTXC1
CTXC0
BTXD0..9 4 Bytes SOF D0 Dn-1 Dn CRC EOF
4
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Figure 4. Check CRC Mode TIming
CRC Computation
CTXD0..31
SOF
D0
D1
Dn
CRC
EOF
Idle
CTXC1
CTXC0
CTCXERR
BTXD0..9 4 Bytes SOF D0 Dn-1 Dn CRC EOF
and ends before EOF. CTXCERR remains low if the computed CRC matches the CRC input on CTXD0..31. CTXCERR is driven high for one word cycle after the end of EOF. If CTXC1 is high (generate CRC) then the ENDEC will add one word (the CRC) to the user's data frame before encoding the EOF. In this situation, when the user commands the ENDEC to encode an EOF, it is latched for one CTXCLK cycle while the ENDEC inserts the generated CRC in the data stream. Then the requested EOF is encoded. During the encoding of the EOF (that is, the one that was latched for encoding after the CRC was inserted) the ENDEC ignores the CTX inputs. Ordered Set Generator Block An ordered set is a Fibre Channel word in which the first byte is a K28.5 special character, followed by valid data characters. Appendix B contains tables for the ordered set coding scheme. When CTXC0 is high, the ordered set generator generates an ordered set from
the most significant byte of the input data, CTXD24..31. Although only the most significant byte of the input word is required for generating an ordered set, and lower order bits CTXD0..23 are "don't cares" for encoding the ordered set, parity checking is performed on the word. Valid word parity must be maintained to prevent parity errors. If a parity or CRC error is detected within a frame, some EOF ordered sets are modified, indicating an invalid frame. Ordered sets EOFN (EOF Normal) and EOFT (EOF Terminate) are modified to EOFNI (EOF Normal-Invalid). Any ordered set can be sent or received. If the ordered set desired is not in the predefined set of Fibre Channel ordered sets, the user can create it using the "special" ordered set commands (see Appendix B). For instance, to send "K28.5, D0.0, D31.7, D0.0," the user would send 8500FF00h on CTXD0..31 while holding CTXC0 high. When receiving this same "special" ordered set
For additional information and latest specifications, see our website: www.triquint.com
5
DATACOM PRODUCTS
TQ9303
(which does not correspond to any predefined Fibre Channel ordered set) the ENDEC will send the user the same value, 8500FF00h, while holding CRXS0 high. It is up the the user to examine the second, third, and fourth bytes of "special" ordered sets to identify them. 8b/10b Encoder Block The 8b/10b Encoder encodes 8-bit-wide data to 10-bitwide data to improve its transmission characteristics. The 8b/10b coding scheme maintains the signal DC balance by keeping the same number of ones and zeros for easier receiver designs, provides good transition density for improved clock recovery, and improves error checking. It also forces the correct running disparity when encoding line states, idles, or receiverready ordered sets. Appendix A contains the lookup tables for the 8b/10b coding scheme. Clock Generator Block The Clock Generator generates word, half-word, and byte clocks required by other blocks in the Encoder. It uses BTXCKIN (a byte clock) from the transmitter as a reference clock. For example, using Fibre Channel data rates, BTXCKIN runs at 106.25 MHz using FC1063, 53.125 MHz using FC531, and 26.5625 MHz using FC266. The Clock Generator generates BTXCKOUT for clocking BTXD0..9. It also generates CTXWREF, a word clock used by the host to generate CTXCLK, which clocks the host I/O registers. CTXCLK runs at 25.5625 MHz using FC1063, 13.28125 MHz using FC531, and 6.640625 MHz using FC266. Raw Mode Transmit In Raw Mode Transmit where TXRAW is high for the whole frame, the input data word bypasses the parity check, ordered set generator, CRC, and 8b/10b, and is directly converted to bytes of data. The word-to-byte mapping of input to output is listed in Table 1. Note that
in raw mode, a "raw" word may be inserted into the data flow at any time, although running disparity will be forced negative and the word sync detector state machine will reset. Proprietary Link Mode The PL_IDLE (Proprietary Link IDLE) input can be used to simplify designs that do not have to conform to Fibre Channel standards. In such designs the CTXC0 input is driven low (that is, grounded) and the PL_IDLE pin is used to distinguish data from nondata. The PL_IDLE pin controls a bit logic in front of the input registers of the CTXC0 and CTXD24..31 inputs. It was added to make it easier for users who aren't concerned with the Fibre Channel protocol, but simply want to control the transmission of data without habing to mux control information into their data paths in order to control the CTXD24..31 pins for ordered set control. On the rising edge of CTXCLK on the first cycle of PL_IDLE going high, the input registers for CTXC0 and CTXD24..31 are "jammed" with the value that would make the ENDEC encode an EOFa. As long as PL_IDLE is held high, these input registers are jammed with the value that would make the ENDEC encode an IDLE ordered set. If CTXC1 is low (check mode) CTXERR will properly reflect the validity of CRC contained in the user's data (assuming the user's data contains CRC), or it can be ignored if no CRC is used. If CTXC1 is high (generate mode), the ENDEC will insert CRC before encoding the EOFa followed by IDLEs. This creates a situation in which the user's data will begin as soon as PL_IDLE is dropped (with no preceding SOF); but it does not present a problem for the ENDEC, because the CRC blocks in both Rx and Tx halves are initialized by any ordered set. Thus, the IDLE ordered set that preceeds the user's data is sufficient to ensure proper CRC calculation.
6
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Table 1. Raw Mode I/O Mapping
TRANSMISSION ORDER Bit
39 38 37 36 FIRST BYTE 35 34 33 32 31 FIRST SERIAL BIT IN TX/RX 30 29 28 27 26 SECOND BYTE 25 24 23 22 21 20 19 18 17 16 THIRD BYTE 15 14 13 12 11 LAST SERIAL BIT IN TX/RX 10 9 8 7 FOURTH BYTE 6 5 4 3 2 1 0
ENCODE: Word to Bytes
CTXC0 CTXP3 CTXD31 CTXD30 CTXD29 CTXD28 CTXD27 CTXD26 CTXD25 CTXD24 CTXC1 CTXP2 CTXD23 CTXD22 CTXD21 CTXD20 CTXD19 CTXD18 CTXD17 CTXD16 CTXRAWA CTXP1 CTXD15 CTXD14 CTXD13 CTXD12 CTXD11 CTXD10 CTXD9 CTXD8 CTXRAWB CTXP0 CTXD7 CTXD6 CTXD5 CTXD4 CTXD3 CTXD2 CTXD1 CTXD0 BTXD0 BTXD1 BTXD2 BTXD3 BTXD4 BTXD5 BTXD6 BTXD7 BTXD8 BTXD9 BTXD0 BTXD1 BTXD2 BTXD3 BTXD4 BTXD5 BTXD6 BTXD7 BTXD8 BTXD9 BTXD0 BTXD1 BTXD2 BTXD3 BTXD4 BTXD5 BTXD6 BTXD7 BTXD8 BTXD9 BTXD0 BTXD1 BTXD2 BTXD3 BTXD4 BTXD5 BTXD6 BTXD7 BTXD8 BTXD9
DECODE: Bytes to Word
BRXD0 BRXD1 BRXD2 BRXD3 BRXD4 BRXD5 BRXD6 BRXD7 BRXD8 BRXD9 BRXD0 BRXD1 BRXD2 BRXD3 BRXD4 BRXD5 BRXD6 BRXD7 BRXD8 BRXD9 BRXD0 BRXD1 BRXD2 BRXD3 BRXD4 BRXD5 BRXD6 BRXD7 BRXD8 BRXD9 BRXD0 BRXD1 BRXD2 BRXD3 BRXD4 BRXD5 BRXD6 BRXD7 BRXD8 BRXD9 CRXS0 CRXP3 CRXD31 CRXD30 CRXD29 CRXD28 CRXD27 CRXD26 CRXD25 CRXD24 CRXS2 CRXP2 CRXD23 CRXD22 CRXD21 CRXD20 CRXD19 CRXD18 CRXD17 CRXD16 CRXS3 CRXP1 CRXD15 CRXD14 CRXD13 CRXD12 CRXD11 CRXD10 CRXD9 CRXD8 CRXS4 CRXP0 CRXD7 CRXD6 CRXD5 CRXD4 CRXD3 CRXD2 CRXD1 CRXD0
For additional information and latest specifications, see our website: www.triquint.com
7
DATACOM PRODUCTS
TQ9303
Proprietary Link Mode (continued) When PL_IDLE is driven low, data words on CTXD0..31 are encoded just as in Fibre Channel operation. When PL_IDLE is driven high, the TQ9303 encodes one EOFa ordered set followed by IDLE ordered sets for as long as PL_IDLE remains high. The EOFa ordered set is used to ensure proper running disparity. When using the PL_IDLE signal, IDLE ordered sets do not force proper running disparity. It is therefore necessary to transmit at least one word with PL_IDLE low followed by at least one word with PL_IDLE high in order to guarantee proper running disparity. Without proper running disparity, the receiver portion of the TQ9303 may flag the IDLE ordered sets as errors and prevent the word sync state machine from reaching the synchronized state as long as the running disparity is incorrect. Without proper running disparity, the receiver portion of the TQ9303 may flag the IDLE ordered sets as errors and prevent the word sync state machine from reaching the synchronized state as long as the running disparity is incorrect. The contents and parity of CTXD0..31 and CTXP0..3 are ignored during the word cycles when PL_IDLE is held high. If CTXC1 is low, then CRC checking will occur, which may cause the TXCERR signal to indicate an error, which can be ignored in proprietary designs. If CTXC1 is driven high, then the TQ9303 will generate a 32-bit CRC word during the first word cycle of PL_IDLE high. During the second word cycle of PL_IDLE high, the EOFa will be encoded followed by IDLE ordered sets. Therefore, at least two word cycles of PL_IDLE high between data bursts must be provided when using CRC generation (that is, CTXC1 high). When using CRC
generation, the CRXS1 signal is used to indicate CRC errors. When not using the CRC, CRXS1 should be ignored. For non-Fibre Channel designs making use of the PL_IDLE input, the CRXSO output can be used to distinguish received data from idle time.
Decoder Section
The Decoder has several functional blocks: 10b/8b Decoder, Ordered Set Decoder, Word Sync Detector, Line State Decoder, 32-bit CRC Checker, Parity Generator, and Clock Generator. The Decoder section has two modes of operation: the Normal mode and Raw mode. In the Normal mode, the Decoder section takes 10 bits of data from the Receiver output, decodes it using 10b/8b, decodes ordered sets, checks CRC, combines four bytes into a single word output, and generates parity. In the Raw mode, the Decoder section directly combines the bytes into words, bypassing 10b/8b decoding, ordered set decoding, CRC checking, and parity generation. The following is the decode sequence data flow: 1. Byte Input 2. Byte-to-Half-Word Conversion 3. 10b/8b Decoding 4. Ordered Set Decoding 5. Line State Decoding 6. Word Sync Generation 7. 32-Bit CRC Checking 8. Muxing between Ordered Set, Unchanged Input, 10b/8b Decoded Input, and Status Bits 9. Half-Word-to-Word Conversion 10. Parity Generation 11. Word Output
8
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
10b/8b Decoder Block The 10b/8b Decoder decodes the 10-bit input (BRXD0..9) into 8 bits, as defined by the Fibre Channel 8b/10b coding scheme. The 10b/8b Decoder drives the RXERROR (Receiver ERROR) high whenever errors are detected. There are three types of errors: invalid characters, invalid running disparities, and special characters that are not positioned in the most significant byte of a word. When the 10b/8b Decoder receives a BRXSYNC of 1, it identifies the input data byte as a K28.5 character and realigns the data in the higher order byte of the half word. In Fibre Channel, K28.5 characters appear only in the most significant byte of a valid generated parity word. RXERROR remains high for the word cycle in which the error occurred. Ordered Set Decoder Block The Ordered Set Decoder decodes the ordered sets from the 10b/8b Decoder output. It generates the decoded ordered set, which is then fed into the mux along with CRXS0. CRXS0 is a status signal which is low for a data word and high for an ordered set. The ordered set decoding table is included in Appendix B. Word Sync Detector Block The Word Sync Detector contains a state machine that monitors the number of valid ordered sets and errors received. The Word Sync Detector drives WRDSYNCN low to indicate that word synchronization on the link has been established. It drives WRDSYNCN high when word synchronization has been lost. Figure 5 illustrates how word synchronization is established and lost. The state machine has five states: State 0 - Loss of Word Sync, State 1 - Word Sync Acquired, State 2 - 1st Invalid Word, State 3 - 2nd Invalid Word, and State 4 - 3rd Invalid Word. Upon RESET or Raw mode at State 0, the initial condition of
Figure 5. Sync State Flow Diagram
RESET or RAW Mode Invalid Word
STATE 0 Loss of Word Sync WSYNC = 0 Three Ordered Sets Without Errors STATE 1 Acquired Word Sync WSYNC = 1 Invalid Word
Invalid Word
Two Consecutive Valid Words
STATE 3 2nd Invalid Word WSYNC = 1
Invalid Word
STATE 4 3rd Invalid Word WSYNC = 1
Two Consecutive Valid Words
Invalid Word
WRDSYNCN is high. If the Word Sync Detector receives three consecutive ordered sets without errors, it acquires word synchronization and moves to State 1, where WRDSYNCN is driven low. If it receives an invalid word while in State 1, it moves to State 2 (1st Invalid Word). If the Word Sync Detector receives an invalid word while in State 2, it moves to State 3 (2nd Invalid Word). If, however, it receives two consecutive valid words, it moves back to State 1. This logic applies to State 3 and State 4. In State 4 (3rd Invalid Word) if the Decoder receives an invalid word, it moves to State 0 (Loss of Word Sync).
For additional information and latest specifications, see our website: www.triquint.com
9
DATACOM PRODUCTS
STATE 2 1st Invalid Word WSYNC = 1
Two Consecutive Valid Words
TQ9303
Line State Decoder Block The state machine that indicates line state status simply looks for three consecutive line state primitives (that is, three of a kind in a row) to achieve a particular Fibre Channel line state. Line states are used in link initialization protocol, as described in the Fibre Channel specification (FC-PH). A subset of the ordered sets, line states are Fibre Channel primitive sequences which provide information regarding the condition of the link. The following are the four line states: * Off-Line State (OLS) indicates either an internal port failure or a transmitter power down/ diagnostics performance / initialization. * Non-Operational State (NOS) signals a link failure. * Link Reset (LR) recognizes the OLS and port reset conditions. * Link Reset Response (LRR) recognizes a link reset. These line states are defined in Appendix B. The Line State Decoder generates CRXS2..3, the line state status bits which advise the host as to the state of the Sync State Machine, and CRXS4..5, the line state ID bits which signal the occurrance of certain primitive sequences. The status bits are shown in Tables 2 and 3. 32-Bit CRC Checker Block The CRC Checker computes the 32-bit cyclic redundancy check on the received data. The CRC Error Status bit CRXS1 is driven high when an error is detected. In Raw mode, CRC is not checked, and CRXS1 is driven low.
Parity Generator Block Four parity bits (CTXP0..3) are generated by the Parity Generator. Each parity bit corresponds to a byte of data, as follows: CRXP0 to CRXD0..7, CRXP1 to CRXD8..15, CRXP2 to CRXD16..23, and CRXP3 to CRXD24..31. Control bit RXPMODE (Receive Parity MODE) alters the normal meaning of CRXP3. RXPMODE low is the normal mode, where CRXP3 generates parity for CRXD24..31. With RXPMODE high, however, CRXP3 generates parity for CRXD24..31 and CRXS0. CRXS0 is a control output that indicates whether CTXD0..31 is data or an ordered set. The parity bits follow odd parity convention, where it is high if the number of ones is even and low if the number of ones is odd. In Raw mode, the Parity Generator does not generate parity, and the output parity bits are mapped with the input data as shown in Table 1. Clock Generator Block The Clock Generator generates word, half-word, and byte clocks required by other blocks in the Decoder. The Clock Generator uses the recovered clock, BRXCLK, generated by the TQ9502 Receiver. For example, using Fibre Channel data rates, BRXCLK (a byte clock) runs at 106.25 MHz using FC1063, 53.125 MHz using FC531, and 26.5625 MHz using FC266.
Table 2. Line State Status Output
CRXS3
0 0 1 1
Table 3. Line State ID Output
CRXS5
0 0 1 1
CRXS2
0 1 0 1
Line State Status
No State Pending State In State Invalid Sequence
CRXS4
0 1 0 1
Line State ID
NOS - Non-Operational State OLS - Off-Line State LR - Link Reset LRR - Link Reset Response
10
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
The Clock Generator generates CRXCLK, a word clock, which is used for clocking the host I/O registers. The user may place the clock edge, CRXCLK, in four places relative to the word input, thereby giving the user control of setup and hold times. Clock edge placement is selected via control pins RXCKPH0 and RXCKPH1 (Receiver ClocK PHase). CRXCLK runs at 26.5625 MHz using FC1063 and 13.28125 MHz using FC531.
The Clock Generator also receives the BRXSYNC signal, which is used for byte alignment. The Receiver drives BRXSYNC high when detecting a K28.5 character. Raw Mode Receive In Raw Mode Receive where RXRAW is high for the whole frame, the input data word bypasses the parity check, ordered set generator, 32-bit CRC, and 8b/10b encoder, and is directly converted to data words. The byte-to-word mapping of data is listed in Table 1.
Figure 6. Pinout
CTXP3 CTXD31 CTXD30 CTXD29 CTXD28 CTXD27 CTXD26 CTXD25 CTXD24 VSS2 CTXP2 CTXD23 CTXD22 VSS3 CTXD21 CTXD20 CTXD19 CTXD18 CTXD17 VDD CTXD16 CTXP1 CTXD15 CTXD14 CTXD13 CTXD12 CTXD11 CTXD10 CTXD9 VSS2 CTXD8 CTXP0 CTXD7 VDD3 CTXD6 CTXD5 CTXD4 CTXD3 CTXD2 CTXD1
CRXD3 VDD CRXD4 CRXD5 VSS1 CRXD6 CRXD7 CRXP0 CRXD8 VSS1 CRXD9 CRXD10 CRXD11 VDD CRXD12 CRXD13 VSS1 CRXD14 CRXD15 VSS2 CRXP1 CRXD16 VSS1 CRXD17 CRXD18 CRXD19 VDD CRXD20 CRXD21 VSS1 CRXD22 CRXD23 CRXP2 CRXD24 VSS1 CRXD25 CRXD26 VDD CRXD27 CRXD28
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
CTXD0 VSS1 BTXD0 BTXD1 BTXD2 VSS1 BTXD3 BTXD4 VDD BTXD5 BTXD6 VSS1 BTXD7 BTXD8 BTXD9 VSS1 BTXCKIN VSS1 BTXCKOUT VDD BRXCLK VSS3 BRXD0 BRXD1 BRXD2 BRXD3 VDD3 BRXD4 BRXD5 BRXD6 BRXD7 VSS3 BRXD8 BRXD9 BRXSYNC VDD CRXD0 CRXD1 VSS1 CRXD2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Pin 1
TQ9303
120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
CTXC0 CTXC1 CTXRAWA CTXRAWB CTXCERR CTXPERR TXPENN PL_IDLE CTXCLK TSTMODE CTXWREF VSS1 TXPMODE TXRAW RXRAW VSS3 RXPMODE VSS2 RXCKPH1 RXCKPH0 VDD3 RESETN VSS1 CRXCLK VSS1 WRDSYNCN RXERROR CRXS5 CRXS4 VSS1 CRXS3 CRXS2 CRXS1 VDD CRXS0 CRXP3 CRXD31 VSS1 CRXD30 CRXD29
For additional information and latest specifications, see our website: www.triquint.com
11
DATACOM PRODUCTS
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
TQ9303
Table 4. Pin Names
Pin
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Description
CTXD0 VSS BTXD0 BTXD1 BTXD2 VSS BTXD3 BTXD4 VDD BTXD5 BTXD6 VSS BTXD7 BTXD8 BTXD9 VSS BTXCKIN VSS BTXCKOUT VDD BRXCLK VSS BRXD0 BRXD1 BRXD2 BRXD3 VDD BRXD4 BRXD5 BRXD6 BRXD7 VSS BRXD8 BRXD9 BRXSYNC VDD CRXD0 CRXD1 VSS CRXD2
Pin
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
Description
CRXD3 VDD CRXD4 CRXD5 VSS CRXD6 CRXD7 CRXP0 CRXD8 VSS CRXD9 CRXD10 CRXD11 VDD CRXD12 CRXD13 VSS CRXD14 CRXD15 VSS CRXP1 CRXD16 VSS CRXD17 CRXD18 CRXD19 VDD CRXD20 CRXD21 VSS CRXD22 CRXD23 CRXP2 CRXD24 VSS CRXD25 CRXD26 VDD CRXD27 CRXD28
Pin
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
Description
CRXD29 CRXD30 VSS CRXD31 CRXP3 CRXS0 VDD CRXS1 CRXS2 CRXS3 VSS CRXS4 CRXS5 RXERROR WRDSYNCN VSS CRXCLK VSS RESETN VDD RXCKPH0 RXCKPH1 VSS RXPMODE VSS RXRAW TXRAW TXPMODE VSS CTXWREF TSTMODE CTXCLK PL_IDLE TXPENN CTXPERR CTXCERR CTXRAWB CTXRAWA CTXC1 CTXC0
Pin
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
Description
CTXP3 CTXD31 CTXD30 CTXD29 CTXD28 CTXD27 CTXD26 CTXD25 CTXD24 VSS CTXP2 CTXD23 CTXD22 VSS CTXD21 CTXD20 CTXD19 CTXD18 CTXD17 VDD CTXD16 CTXP1 CTXD15 CTXD14 CTXD13 CTXD12 CTXD11 CTXD10 CTXD9 VSS CTXD8 CTXP0 CTXD7 VDD CTXD6 CTXD5 CTXD4 CTXD3 CTXD2 CTXD1
12
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Table 5. Pin Descriptions
Symbol
BTXCKIN BTXCKOUT BTXD0..9 CTXWREF CTXCLK
I/O
I O O O I
# of I/O
1 1 10 1 1
Interface
Transmitter Transmitter Transmitter Host Host
Description
Takes clock from Transmitter to generate BTXCKOUT. Used by Transmitter to clock in BTXD0..9. Data Output. Reference Word Clock which can be used in signaling the host to issue a CTXCLK. Word Clock generated from CTXCLK to clock in/out host I/O registers. The following signals are latched by CTXCLK: CTXP0..3, CTXC0,1, CTXRAW, CTXPENN, CTXPMODE, CTXPERR, CTXCERR. High indicates CTXD0..31 is an Ordered Set; Low indicates data. High generates CRC; low checks CRC. Transmit data output (CTXD31 = MSB; CTXD0 = LSB).
Pin Numbers
17 19 3-5, 7, 8, 10, 11, 13-15 110 112
CTXC0 CTXC1 CTXD0..31
I I I
1 1 32
Host Host Host
120 119 1, 160-155, 153-151, 149-143, 141, 139-135, 133, 132, 129-122 152 142 131 121
CTXP0 CTXP1 CTXP2 CTXP3
I I I I
1 1 1 1
Host Host Host Host
CTXD0..7 Odd Parity input. CTXD8..15 Odd Parity input. CTXD16..23 Odd Parity input. CTXD24..31 and optional CTXC0 Odd Parity input. If TXPMODE is high, CTXP3 checks parity for CTXD24..31 and CTXC0. If TXPMODE is low, CTXP3 checks parity for CTXD24..31 only. Raw data bit 19. Raw data bit 9. CTXPERR high indicates CTXD0..31 Parity Error. CTXCERR high indicates CRC Error. When in CRC Check mode, CTXC1 is low. Normally GND. HIGH state used by vendor to monitor delay and threshold. High selects Raw Transmit Data mode. Active Low Transmit Parity Enable; Tx checks Parity when low. If TXPMODE is high, CTXP3 generates parity for CTXD24..31 and CTXC0. If TXPMODE is low, CTXP3 generates parity for CTXD24..31 only. Proprietary link idle control Driven by RXCLK. Clocks data from BRXD0..9. Receives RXD0..9 from Receiver. SYNC. CRXCLK latches CRXDO..31.
CTXRAWA CTXRAWB CTXPERR CTXCERR TSTMODE TXRAW TXPENN TXPMODE
I I O O I I I I
1 1 1 1 1 1 1 1
Host Host Host Host Host Host Host Host
118 117 115 116 111 107 114 108
PL_IDLE BRXCLK BRXD0..9 BRXSYNC CRXCLK
I I I I O
1 1 10 1 1
Host Receiver Receiver Receiver Host
113 21 23-26, 28-31, 33, 34 35 97
(Continued on next page)
For additional information and latest specifications, see our website: www.triquint.com
13
DATACOM PRODUCTS
TQ9303
Table 5. Pin Descriptions (continued)
Symbol
CRXD0..31
I/O
O
# of I/O
32
Interface
Host
Description
Receive data output (CRXD31 = MSB; CRXD0 = LSB).
Pin Numbers
37,38,40,41,43,44, 46,47,49,51-53,55, 56,58,59,62,64-66, 68,69,71,72,74, 76,77,79-82,84 86 88 89,90
CRXS0 CRXS1 CRXS2,3
O O O
1 1 2
Host Host Host
High indicates CRXD0..31 is an Ordered Set; Low indicates data. CRC error flag; high indicates a CRC error. Line state status bits. State equivalent for CRXS3 and CRXS2 from left to right, respectively: 00 - No State 01 - Pending 10 - State Rec. 11 - Bad Seq. Line state ID bits. CRXD0..7 Odd Parity output. CRXD8..15 Odd Parity output. CRXD16..23 Odd Parity output. CRXD24..31 and optional CRXS01 Odd Parity output. If RXPMODE is high, CRXP3 generates Parity for CRXD24..31 and CRXS0. If RXPMODE is low, CRXP3 generates Parity for CRXD24..31 only. Receive Error; high indicates invalid data from the Receiver. High selects Raw Receive Data mode. Word Synchronization Status Flag; Low indicates Synchronization aqcuired. Can be connected to SYNCEN on TQ9502/GA9102 Receiver. Receiver Parity mode. If RXPMODE is high, CRXP3 generates Parity for CRXD24..31 and CRXS0. If RXPMODE is low, CRXP3 generates Parity for CRXD24..31 only. CRXCLK Phase Select pin. Active low. +5 Volt supply. Ground.
CRXS4,5 CRXP0 CRXP1 CRXP2 CRXP3
O O O O O
2 1 1 1 1
Host Host Host Host Host
92,93 48 61 73 85
RXERROR RXRAW WRDSYNCN
O I O
1 1 1
Host Host Host
94 106 95
RXPMODE
I
1
Host
104
RXCKPH0,1 RESETN VDD GND (VSS)
I I -- --
2 1 -- --
Host Host -- --
101,102 99 9,20,27,36,42,54,67, 78,87,100,140,154 2,6,12,16,18,22,32,39, 45,50,57,60,63,70,75, 83,91,96,98,103,105, 109,130,134,150
14
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Table 6. Absolute Maximum Ratings
Parameter
Storage temperature Ambient temperature Supply voltage to ground DC input voltage DC input current Thermal resistance (JC)
Note: Exceeding the absolute maximum ratings may damage the device.
Min.
-65 -55 -0.5 -0.5 -30
Max.
+150 +125 +7.0 VDD + 0.5 +5 5.6
Unit
C C V V mA C / W
Table 7. Operating Conditions
Parameter
Supply voltage Ambient temperature Power @ 125 MHz Power @ DC
Note: Proper functionality is guaranteed under these conditions.
Range
+5 5% 0-70 4.1 0.3
Unit
V C W W DATACOM PRODUCTS V V V 0.8 -150 -400 V A
Table 8. DC Characteristics
Symbol
VOH VOL VIH VIL IIL
Description
Output high voltage Output low voltage Input high level Input low level Input Leakage current
Conditions
VDD = Min, IOH = -4 mA, VIN = VIH or VIL VDD = Min, IOL = 4 mA, VIN = VIH or VIL Guaranteed input logical high voltage for all inputs Guaranteed input logical low voltage for all inputs VDD = Max, VIN = 0.40V
Min.
3.6
Typ.
Max.
0.37
Unit
2.0
Notes: * Unless otherwise specified, these values apply over the recommended operating range. * Typical limits are: VDD = 5.0 V and TA = 25 C. * Input levels (VIH and VIL) are absolute values with respect to device ground, and all overshoots due to system or tester noise are included. * VIN, the TTL input, can be high or low.
TTL Test Load, TLL Outputs
VDD
2000
1360
For additional information and latest specifications, see our website: www.triquint.com
15
TQ9303
Table 9. AC Characteristics--Transmit (CTX) Timing
Parameter
T1 T2 T3 T4
Description
CTXCLK Pulse Width High CTXCLK Pulse Width Low CTXCLK Period CTXD(0..31), CTXP(0..3), CTXRAWA, CTXRAWB, CTXPENN, CTXPMOD, CTXC0, and CTXRAW-to-CTXCLK setup time CTXCLK-to-CTXD(0..31), CTXP(0..3), CTXRAWA, CTXRAWB, CTXPENN, CTXPMOD, CTXC0, and CTXRAW hold time CTXC0 and CTXC1-to-CTXCLK setup time CTXCLK-to-CTXC0 and CTXC1 hold time CTXCLK-to-CTXCERR and CTXPERR Output
Abs.Min.
12 12 32 1.9
Rel.Min.
t+4 t+4 4t
Abs.Max.
Rel.Max.
3t - 4 3t - 4 4t
Unit
ns ns ns ns
T5
0.9
ns
T6 T7 T8
0.8 2 2.5 15.5
ns ns ns
Notes: * "t" represents one (1) BTXCKIN period. * Minimum setup and hold times are based on a 30-pf load on all outputs and a 50% duty cycle on CTXCLK.
Figure 7. Transmit (CTX) Timing
CTXCLK T1 T3 CTXD(0..31), CTXP(0..3), CTXRAWA, CTXRAWB, CTXPENN, CTXPMOD, CTXC0, CTXRAW, PL_IDLE T2
T4
T5
T6 CTXC1
T7
T8 CTXCERR, CTXPERR
16
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Table 10. AC Characteristics--Transmit (BTX) Timing (1)
Parameter
T9 T10 T11 T12 T13
Description
BTXCKN Pulse Width High BTXCKIN Pulse Width Low BTXCKIN Period BTXD(0..9)-to-BTXCKOUT setup time BTXCKOUT-to-BTXD(0..9) hold time
Abs.Min.
3.2 3.2 8 (2) (2)
Rel.Min.
0.4t 0.4t t (2) (2)
Abs.Max.
Rel.Max.
0.6t 0.6t t
Unit
ns ns ns
(2) (2)
(2) (2)
Notes: 1. "t" represents one (1) BTXCKIN period. 2. See Table 11, "Transmit (BTX) Timing Formulas," below.
Figure 8. Transmit (BTX) Timing
BTXCKIN T9 T11 T10
DATACOM PRODUCTS
T12 BTXD(0..9)
T13
BTXCKOUT
Table 11. Transmit (BTX) Timing Formulas
t = 8 ns (125 MHz)
2.06 ns (1.8 ns min.) 2.58 ns (3.4 ns min.)
Parameter
T12 T13
Formula
d * t - 1.94 ns (1 - d) * t - 1.42 ns
t = 9.41 ns (106.25 MHz)
2.76 ns (2.5 ns min.) 3.28 ns (2.1 ns min.)
t = 16 ns (62.5 MHz)
6.06 ns 6.58 ns
t = 18.821 ns (53.125 MHz)
7.47 ns 7.99 ns
Note:
"d" represents one (1) BTXCKIN duty cycle, T9 / T11 or T9 / (T9 + T10). The calculations given above are made with d = 0.5 (50%). When BTXCKIN has other than a 50% duty cycle (d <> 0.5), TSETUP and THOLD are affected by the shift in clock edges. The rising edge of BTXCKOUT is triggered by the falling edge of BTXCKIN; thus, if the BTXCKIN high time is 2 ns less than the BTXCKIN low time, then 1 ns must be subtracted from the setup times given abore, and 1 ns must be added to the hold times given above.
For additional information and latest specifications, see our website: www.triquint.com
17
TQ9303
Table 12. AC Characteristics--Receive (BRX) Timing
Parameter
T14 T15 T16 T17 T18
Description
BRXCLK Pulse Width High BRXCLK Pulse Width Low BRXCLK Period BRXD(0..9) and BRXSYNC-to-BTXCKOUT setup time BRXCLK-to-BRXD(0..9) and BRXSYNC hold time
Abs.Min.
3.2 3.2 8 1.25 0.25
Rel.Min.
0.4t 0.4t t
Abs.Max.
Rel.Max.
0.6t 0.6t t
Unit
ns ns ns ns ns
Note:
"t" represents one (1) BRXCLK period.
Figure 9. Receive (BRX) Timing
Figure
BRXCLK T14 T16 T15
T17 BRXD(0..9), BRXSYNC
T18
18
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Table 13. AC Characteristics--Receive (CRX) Timing (1)
Parameter
T19 T20 T21 T22 T23
Description
CRXCLK Pulse Width High CRXCLK Pulse Width Low CRXCLK Period CRXD*, CRXP*, and CRXS*-to-CRXCLK setup time CRXCLK-to-CRXD*, CRXP*, and CRXS* hold time
Abs.Min.
13 13 32 (2) (2)
Rel.Min.
2t - 3 2t - 3 4t (2) (2)
Abs.Max.
19 19 (2) (2)
Rel.Max.
2t + 3 2t + 3 4t (2) (2)
Unit
ns ns ns
Notes: 1. "t" represents one (1) BRXCLK period. 2. See Table 14, "Receive (CRX) Timing Formulas," below.
Figure 10. Receive (CRX) Timing
CRXCLK T19 T21 T20
CRXD(0..31), CRXP(0..3), RXERROR, WRDSYNCN
T22
T23
Table 14. Receive (CRX) Timing Formulas
t = 8 ns (125 MHz)
-0.47 ns 7.53 ns 15.53 ns 23.53 ns 28.07 ns 20.07 ns 12.07 ns 4.07 ns
Parameter
RXCKPH(1:0)
0:0 0:1 1:0 1:1 0:0 0:1 1:0 1:1
Formula
0.054t - 0.94 ns 1.054t - 0.94 ns 2.054t - 0.94 ns 3.054t - 0.94 ns 3.5t - 0.07 ns 2.5t - 0.07 ns 1.5t - 0.07 ns 0.5t - 0.07 ns
t = 9.41 ns (106.25 MHz)
-0.39 ns 9.02 ns 18.43 ns 27.84 ns 33.01 ns 23.59 ns 14.18 ns 4.77 ns
t = 16 ns (62.5 MHz)
0.00 ns 16.00 ns 32.00 ns 48.00 ns 56.07 ns 40.07 ns 24.07 ns 8.07 ns
t = 18.821 ns (53.125 MHz)
0.16 ns 18.99 ns 37.81 ns 56.63 ns 65.95 ns 47.12 ns 28.30 ns 9.48 ns
For additional information and latest specifications, see our website: www.triquint.com
19
DATACOM PRODUCTS
TQ9303
Table A-1. Valid Data Characters
Data Byte Bits Name HGF EDCBA 1
D0.0 D1.0 D2.0 D3.0 D4.0 D5.0 D6.0 D7.0 D8.0 D9.0 D10.0 D11.0 D12.0 D13.0 D14.0 D15.0 D16.0 D17.0 D18.0 D19.0 D20.0 D21.0 D22.0 D23.0 D24.0 D25.0 D26.0 D27.0 D28.0 D29.0 D30.0 D31.0 D0.1 D1.1 D2.1 D3.1 D4.1 D5.1 D6.1 D7.1 D8.1 D9.1 D10.1 D11.1 D12.1 D13.1 D14.1 D15.1 D16.1 D17.1 D18.1 D19.1 D20.1 D21.1 D22.1 D23.1 D24.1 D25.1 D26.1 D27.1 D28.1 D29.1 D30.1 D31.1 D0.2 D1.2 D2.2 D3.2 D4.2 D5.2 D6.2 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 010 010 010 010 010 010 010 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 00000 00001 00010 00011 00100 00101 00110
Current abcdei
100111 011101 101101 110001 110101 101001 011001 111000 111001 100101 010101 110100 001101 101100 011100 010111 011011 100011 010011 110010 001011 101010 011010 111010 110011 100110 010110 110110 001110 101110 011110 101011 100111 011101 101101 110001 110101 101001 011001 111000 111001 100101 010101 110100 001101 101100 011100 010111 011011 100011 010011 110010 001011 101010 011010 111010 110011 100110 010110 110110 001110 101110 011110 101011 100111 011101 101101 110001 110101 101001 011001
RD - fghj 2
0100 0100 0100 1011 0100 1011 1011 1011 0100 1011 1011 1011 1011 1011 1011 0100 0100 1011 1011 1011 1011 1011 1011 0100 0100 1011 1011 0100 1011 0100 0100 0100 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 0101 0101 0101 0101 0101 0101 0101
Current abcdei
011000 100010 010010 110001 001010 101001 011001 000111 000110 100101 010101 110100 001101 101100 011100 101000 100100 100011 010011 110010 001011 101010 011010 000101 001100 100110 010110 001001 001110 010001 100001 010100 011000 100010 010010 110001 001010 101001 011001 000111 000110 100101 010101 110100 001101 101100 011100 101000 100100 100011 010011 110010 001011 101010 011010 000101 001100 100110 010110 001001 001110 010001 100001 010100 011000 100010 010010 110001 001010 101001 011001
RD + fghj 2
1011 1011 1011 0100 1011 0100 0100 0100 1011 0100 0100 0100 0100 0100 0100 1011 1011 0100 0100 0100 0100 0100 0100 1011 1011 0100 0100 1011 0100 1011 1011 1011 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 0101 0101 0101 0101 0101 0101 0101
Data Byte Bits Name HGF EDCBA 1
D7.2 D8.2 D9.2 D10.2 D11.2 D12.2 D13.2 D14.2 D15.2 D16.2 D17.2 D18.2 D19.2 D20.2 D21.2 D22.2 D23.2 D24.2 D25.2 D26.2 D27.2 D28.2 D29.2 D30.2 D31.2 D0.3 D1.3 D2.3 D3.3 D4.3 D5.3 D6.3 D7.3 D8.3 D9.3 D10.3 D11.3 D12.3 D13.3 D14.3 D15.3 D16.3 D17.3 D18.3 D19.3 D20.3 D21.3 D22.3 D23.3 D24.3 D25.3 D26.3 D27.3 D28.3 D29.3 D30.3 D31.3 D0.4 D1.4 D2.4 D3.4 D4.4 D5.4 D6.4 D7.4 D8.4 D9.4 D10.4 D11.4 D12.4 D13.4 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 100 100 100 100 100 100 100 100 100 100 100 100 100 100 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101
Current abcdei
111000 111001 100101 010101 110100 001101 101100 011100 010111 011011 100011 010011 110010 001011 101010 011010 111010 110011 100110 010110 110110 001110 101110 011110 101011 100111 011101 101101 110001 110101 101001 011001 111000 111001 100101 010101 110100 001101 101100 011100 010111 011011 100011 010011 110010 001011 101010 011010 111010 110011 100110 010110 110110 001110 101110 011110 101011 100111 011101 101101 110001 110101 101001 011001 111000 111001 100101 010101 110100 001101 101100
RD - fghj 2
0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0011 0011 0011 1100 0011 1100 1100 1100 0011 1100 1100 1100 1100 1100 1100 0011 0011 1100 1100 1100 1100 1100 1100 0011 0011 1100 1100 0011 1100 0011 0011 0011 0010 0010 0010 1101 0010 1101 1101 1101 0010 1101 1101 1101 1101 1101
Current abcdei
000111 000110 100101 010101 110100 001101 101100 011100 101000 100100 100011 010011 110010 001011 101010 011010 000101 001100 100110 010110 001001 001110 010001 100001 010100 011000 100010 010010 110001 001010 101001 011001 000111 000110 100101 010101 110100 001101 101100 011100 101000 100100 100011 010011 110010 001011 101010 011010 000101 001100 100110 010110 001001 001110 010001 100001 010100 011000 100010 010010 110001 001010 101001 011001 000111 000110 100101 010101 110100 001101 101100
RD + fghj 2
0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 1100 1100 1100 0011 1100 0011 0011 0011 1100 0011 0011 0011 0011 0011 0011 1100 1100 0011 0011 0011 0011 0011 0011 1100 1100 0011 0011 1100 0011 1100 1100 1100 1101 1101 1101 0010 1101 0010 0010 0010 1101 0010 0010 0010 0010 0010
Notes: 1. "HGF, EDCBA" corresponds to data inputs CTXD7-CTXD0, in that order. 2. "abcdei, fghj" corresponds to BTXD9-BTXD0, in that order; "a" is to be transmitted first, followed by "b," "c," . . . "j."
20
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Table A-1. Valid Data Characters (continued)
Data Byte Bits Name HGF EDCBA 1
D14.4 D15.4 D16.4 D17.4 D18.4 D19.4 D20.4 D21.4 D22.4 D23.4 D24.4 D25.4 D26.4 D27.4 D28.4 D29.4 D30.4 D31.4 D0.5 D1.5 D2.5 D3.5 D4.5 D5.5 D6.5 D7.5 D8.5 D9.5 D10.5 D11.5 D12.5 D13.5 D14.5 D15.5 D16.5 D17.5 D18.5 D19.5 D20.5 D21.5 D22.5 D23.5 D24.5 D25.5 D26.5 D27.5 D28.5 D29.5 D30.5 D31.5 D0.6 D1.6 D2.6 D3.6 D4.6 D5.6 D6.6 D7.6 D8.6 D9.6 D10.6 D11.6 D12.6 D13.6 D14.6 D15.6 D16.6 D17.6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001
Current abcdei
011100 010111 011011 100011 010011 110010 001011 101010 011010 111010 110011 100110 010110 110110 001110 101110 011110 101011 100111 011101 101101 110001 110101 101001 011001 111000 111001 100101 010101 110100 001101 101100 011100 010111 011011 100011 010011 110010 001011 101010 011010 111010 110011 100110 010110 110110 001110 101110 011110 101011 100111 011101 101101 110001 110101 101001 011001 111000 111001 100101 010101 110100 001101 101100 011100 010111 011011 100011
RD - fghj 2
1101 0010 0010 1101 1101 1101 1101 1101 1101 0010 0010 1101 1101 0010 1101 0010 0010 0010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110
Current abcdei
011100 101000 100100 100011 010011 110010 001011 101010 011010 000101 001100 100110 010110 001001 001110 010001 100001 010100 011000 100010 010010 110001 001010 101001 011001 000111 000110 100101 010101 110100 001101 101100 011100 101000 100100 100011 010011 110010 001011 101010 011010 000101 001100 100110 010110 001001 001110 010001 100001 010100 011000 100010 010010 110001 001010 101001 011001 000111 000110 100101 010101 110100 001101 101100 011100 101000 100100 100011
RD + fghj 2
0010 1101 1101 0010 0010 0010 0010 0010 0010 1101 1101 0010 0010 1101 0010 1101 1101 1101 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110
Data Byte Bits Name HGF EDCBA 1
D18.6 D19.6 D20.6 D21.6 D22.6 D23.6 D24.6 D25.6 D26.6 D27.6 D28.6 D29.6 D30.6 D31.6 D0.7 D1.7 D2.7 D3.7 D4.7 D5.7 D6.7 D7.7 D8.7 D9.7 D10.7 D11.7 D12.7 D13.7 D14.7 D15.7 D16.7 D17.7 D18.7 D19.7 D20.7 D21.7 D22.7 D23.7 D24.7 D25.7 D26.7 D27.7 D28.7 D29.7 D30.7 D31.7 110 110 110 110 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 11111
Current abcdei
010011 110010 001011 101010 011010 111010 110011 100110 010110 110110 001110 101110 011110 101011 100111 011101 101101 110001 110101 101001 011001 111000 111001 100101 010101 110100 001101 101100 011100 010111 011011 100011 010011 110010 001011 101010 011010 111010 110011 100110 010110 110110 001110 101110 011110 101011
RD - fghj 2
0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0001 0001 0001 1110 0001 1110 1110 1110 0001 1110 1110 1110 1110 1110 1110 0001 0001 0111 0111 1110 0111 1110 1110 0001 0001 1110 1110 0001 1110 0001 0001 0001
Current abcdei
010011 110010 001011 101010 011010 000101 001100 100110 010110 001001 001110 010001 100001 010100 011000 100010 010010 110001 001010 101001 011001 000111 000110 100101 010101 110100 001101 101100 011100 101000 100100 100011 010011 110010 001011 101010 011010 000101 001100 100110 010110 001001 001110 010001 100001 010100
RD + fghj 2
0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 1110 1110 1110 0001 1110 0001 0001 0001 1110 0001 0001 1000 0001 1000 1000 1110 1110 0001 0001 0001 0001 0001 0001 1110 1110 0001 0001 1110 0001 1110 1110 1110
Table A-2. Valid Special Characters
Special Code Name
K28.0 K28.1 K28.2 K28.3 K28.4 K28.5 K28.6 K28.7 K23.7 K27.7 K29.7 K30.7
Current abcdei
001111 001111 001111 001111 001111 001111 001111 001111 111010 110110 101110 011110
RD - fghj (2)
0100 1001 0101 0011 0010 1010 0110 1000 1000 1000 1000 1000
Current abcdei
110000 110000 110000 110000 110000 110000 110000 110000 000101 001001 010001 100001
RD + fghj (2)
1011 0110 1010 1100 1101 0101 1001 0111 0111 0111 0111 0111
Notes: 1. "HGF, EDCBA" corresponds to data inputs CTXD7-CTXD0, in that order. 2. "abcdei, fghj" corresponds to BTXD9-BTXD0, in that order. "a" is to be transmitted first, followed by "b," "c," . . . "j."
For additional information and latest specifications, see our website: www.triquint.com
21
DATACOM PRODUCTS
TQ9303
Table B-1. TQ9303 Encoding
32-Bit Word Encoder Input 30 29 28 27:24 Sig SOF EOF Type
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0001 0010 0011 0101 0110 0111 1101 1000 0000 0100 1100 1001 0001 1101 0000 0110 1000 1001 1010 1011 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011
Ordered Set
SOFn13 SOFn2 SOFn3 SOFi1 SOFi2 SOFi3 SOFc1 SOFf EOFn4,5 EOFt5 EOFdt6 EOFa EOFni EOFdti Idle7 R-Rdy7 NOS7 OLS7 LR7 LRR7 Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined
31 Cntl
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
23:16
_1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 (XYB)2 (XYB)2 (XYB)2 (XYB)2 (XYB)2 (XYB)2 (XYB)2 (XYB)2 (XYB)2 (XYB)2 (XYB)2 (XYB)2
15:8
_1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 (XYC)2 (XYC)2 (XYC)2 (XYC)2 (XYC)2 (XYC)2 (XYC)2 (XYC)2 (XYC)2 (XYC)2 (XYC)2 (XYC)2
7:0
_1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 _1 (XYD)2 (XYD)2 (XYD)2 (XYD)2 (XYD)2 (XYD)2 (XYD)2 (XYD)2 (XYD)2 (XYD)2 (XYD)2 (XYD)2
Beg. RD
Neg Neg Neg Neg Neg Neg Neg Neg Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Neg Neg Neg Neg Neg
Ordered Set Output
(K28.5-D21.5-D23.1-D23.1) (K28.5-D21.5-D21.1-D21.1) (K28.5-D21.5-D22.1-D22.1) (K28.5-D21.5-D23.2-D23.2) (K28.5-D21.5-D21.2-D21.2) (K28.5-D21.5-D22.2-D22.2) (K28.5-D21.5-D23.0-D23.0) (K28.5-D21.5-D24.2-D24.2) (K28.5-D21.4-D21.6-D21.6) (K28.5-D21.5-D21.6-D21.6) (K28.5-D21.4-D21.3-D21.3) (K28.5-D21.5-D21.3-D21.3) (K28.5-D21.4-D21.4-D21.4) (K28.5-D21.5-D21.4-D21.4) (K28.5-D21.4-D21.7-D21.7) (K28.5-D21.5-D21.7-D21.7) (K28.5-D10.4-D21.6-D21.6) (K28.5-D10.5-D21.6-D21.6) (K28.5-D10.4-D21.4-D21.4) (K28.5-D10.5-D21.4-D21.4) (K28.5-D21.4-D21.5-D21.5) (K28.5-D21.4-D10.2-D10.2) (K28.5-D21.2-D31.5-D5.2) (K28.5-D21.1-D10.4-D21.2) (K28.5-D9.2-D31.5-D9.2) (K28.5-D21.1-D31.5-D9.2) (K28.0-DX.YB-DX.YC-DX.YD) (K28.1-DX.YB-DX.YC-DX.YD) (K28.2-DX.YB-DX.YC-DX.YD) (K28.3-DX.YB-DX.YC-DX.YD) (K28.4-DX.YB-DX.YC-DX.YD) (K28.5-DX.YB-DX.YC-DX.YD) (K28.6-DX.YB-DX.YC-DX.YD) (K28.7-DX.YB-DX.YC-DX.YD) (K23.7-DX.YB-DX.YC-DX.YD) (K27.7-DX.YB-DX.YC-DX.YD) (K29.7-DX.YB-DX.YC-DX.YD) (K30.7-DX.YB-DX.YC-DX.YD)
Notes:
1. Don't care (any value). 2. Outputs for the data characters in the ordered set must be encoded to the correct data values. 3. SOF - Start-of-frame delimiter. 4. EOF - End-of-frame delimiter
5. Encoded as EOFNI if TERR or PERR = 1. 6. Encoded as EOFDTI if TERR or PERR = 1. 7. Proper running disparity is forced before encoding these ordered sets.
22
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Table B-2. TQ9303 Decoding
Ordered Set Input
SOFn1 SOFn2 SOFn3 SOFi1 SOFi2 SOFi3 SOFc1 SOFf EOFn EOFt EOFdt EOFa EOFni EOFdti Idle R_Rdy NOS OLS LR LRR (K28.0-DX.YB-DX.YC-DX.YD) (K28.1-DX.YB-DX.YC-DX.YD) (K28.2-DX.YB-DX.YC-DX.YD) (K28.3-DX.YB-DX.YC-DX.YD) (K28.4-DX.YB-DX.YC-DX.YD) (K28.5-DX.YB-DX.YC-DX.YD)1 (K28.6-DX.YB-DX.YC-DX.YD) (K28.7-DX.YB-DX.YC-DX.YD) (K23.7-DX.YB-DX.YC-DX.YD) (K27.7-DX.YB-DX.YC-DX.YD) (K29.7-DX.YB-DX.YC-DX.YD) (K30.7-DX.YB-DX.YC-DX.YD)
Cntl
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
Sig
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
31:24 SOF
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32-Bit Decoded Output 23:16 EOF Type BRD -(2)
0001 0010 0011 0101 0110 0111 1101 1000 0000 0100 1100 1001 0001 1101 0000 0110 1000 1001 1010 1011 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 (B516) (B516) (B516) (B516) (B516) (B516) (B516) (B516) (B516) (B516) (B516) (B516) (AA16) (AA16) (9516) (9516) (5516) (3516) (4916) (9516) (XYB) (XYB) (XYB) (XYB) (XYB) (XYB) (XYB) (XYB) (XYB) (XYB) (XYB) (XYB)
15:8
(3716) (3516) (3616) (5716) (5516) (5616) (1716) (5816) (D516) (7516) (9516) (F516) (D516) (9516) (B516) (4A16) (BF16) (8A16) (BF16) (BF16) (XYC) (XYC) (XYC) (XYC) (XYC) (XYC) (XYC) (XYC) (XYC) (XYC) (XYC) (XYC)
7:0 BRD +(3)
(3716) (3516) (3616) (5716) (5516) (5616) (1716) (5816) (D516) (7516) (9516) (F516) (D516) (9516) (B516) (4A16) (4516) (5516) (4916) (4916) (XYD) (XYD) (XYD) (XYD) (XYD) (XYD) (XYD) (XYD) (XYD) (XYD) (XYD) (XYD)
(9516) (9516) (9516) (9516) (8A16) (8A16)
Notes: 1. Valid for any unrecognized control sequence starting with "K28.5." Not valid for acquiring Word Sync. 2. BRD - Beginning Running Disparity Negative. 3. BRD + Beginning Running Disparity Positive.
For additional information and latest specifications, see our website: www.triquint.com
23
DATACOM PRODUCTS
TQ9303
Mechanical Specifications
Figure 11. TQ9303 PQFP Package Dimensions (All dimensions are in millimeters)
32.0 0.4 28.0 0.2 160 121
1 PIN 1
120
32.0 0.4 28.0 0.2
40
81
1.325 TYP.
41 0.65 TYP. NON-ACCUM. 0.3 +0.1
80
+0.2 0.45 -0.1 4.45 MAX 30.4 +0.4 3.6 +0.2
24
For additional information and latest specifications, see our website: www.triquint.com
TQ9303
Ordering Information
TQ9303-QC
Supporting Products
Fibre Channel Encoder/Decoder
DATACOM PRODUCTS
TQ9501-MC TQ9502-MC
531/1063 Mbaud Transmitter 531/1063 Mbaud Receiver
Additional Information
For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint: Web: www.triquint.com Email: sales@tqs.com Tel: (503) 615-9000 Fax: (503) 615-8900
For technical questions and additional information on specific applications: Email: applications@tqs.com
The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems. Copyright (c) 1997 TriQuint Semiconductor, Inc. All rights reserved. Revision 1.1.A November 1997
For additional information and latest specifications, see our website: www.triquint.com
25


▲Up To Search▲   

 
Price & Availability of TQ9303

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X